目次
- Researchers
- Photo Acid Generator (PAG)
- Photoreaction Quantum Yield
- Photoreaction Mechanism
- Photo Base Generator (PBG)
- 3D Printing
- Multi-Photon Lithography
- Photochemical Models
- Visible Light
- Extreme Ultraviolet (EUV)
- Self-Immolative Polymers
- Photodegradable Polymers
- Photodegradable Gels
- Photodegradable Units
- Negative-Type
- SU-8
- Photopolymerization
- Oxirane/Oxetane
- PhD Thesis
- Textbooks
Researchers
Researchers
- Arthur H. Winter [Google Scholar]
Keywords: Photocages
- Christopher Barner-Kowollik [Google Scholar]
Keywords: RAFT Polymerization, 3D Laser Printing
- Daniel N. Congreve [Google Scholar] [Stanford]
Keywords: Triplet–Triplet Annihilation
- Guoqiang Yang [SEMICON CHINA]
- Hayden K. Taylor [Google Scholar] [UC Berkeley]
Keywords: Tomographic Volumetric Additive Manufacturing
- James F. Cameron [SPIE]
- James V. Crivello [Researchain]
Keywords: Photoinitiators, Crivello Salts, Epoxy Resins
- Javier Read de Alaniz [Google Scholar]
Keywords: Donor–Acceptor Stenhouse Adducts (DASA)
- Jeremiah A. Johnson [Google Scholar]
Keywords: Polymer Topology
- Kristi S. Anseth [Google Scholar]
Keywords: Photodegradable Hydrogels
- Martin Wegener [Google Scholar] [KIT]
Keywords: Light-Sheet 3D Printing, Nanophotonics
- Maxim Shusteff [Google Scholar] [Lawrence Livermore National Laboratory]
Keywords: Tomographic Volumetric Additive Manufacturing
- Patrick Theato [Google Scholar]
Keywords: Photoresponsive Polymers, Hydrogels
- Pavel A. Levkin [Google Scholar]
Keywords: Photoresponsive Hydrogels
- Robert L. Brainard [SPIE]
The first chemist to design EUV photoresists.
Keywords: EUV Photoresists
- Ryan C. Hayward [Google Scholar]
Keywords: Halftone Lithography, Shape Programming
- Seth R. Marder [Laboratory]
- Xiangming He [Google Scholar] [IEEE] [Laboratory]
Keywords: Two-Photon Absorption
Photo Acid Generator (PAG)
Photoreaction Quantum Yield
- Pawloski, A. R.; Christian, Nealey, P. F. A Standard Addition Technique To Quantify Photoacid Generation in Chemically Amplified Photoresist. Chem. Mater. 2001, 12, 4154.
- Zhou, W.; Kuebler, S. M.; Carrig, D.; Perry, J. W.; Marder, S. R. Efficient Photoacids Based upon Triarylamine Dialkylsulfonium Salts. J. Am. Chem. Soc. 2002, 124, 1897.
- Xia, R.; Malval, J.-P.; Jin, M.; Spangenberg, A.; Wan, D.; Pu, H.; Vergote, T.; Morlet-Savary, F.; Chaumeil, H.; Baldeck, P.; Poizat, O.; Soppera, O. Enhancement of Acid Photogeneration Through a Para-to-Meta Substitution Strategy in a Sulfonium-Based Alkoxystilbene Designed for Two-Photon Polymerization. Chem. Mater. 2012, 24, 237.
- Tsiartas, P. C.; Schmid, G. M.; Johnson, H. F.; Stewart, M. D.; Willson, C. G. Quantifying Acid Generation Efficiency for Photoresist Applications. J. Vac. Sci. Technol. 2005, 23, 224.
電気滴定によるPAGの光反応量子収率測定.
- Brainard, R.; Higgins, C.; Hassanein, E.; Matyi, R.; Wüest, A. Film Quantum Yields of Ultrahigh PAG EUV Photoresists. J. Photopolym. Sci. Technol. 2008, 21, 457.
- Shi, Z.; Peng, P.; Strohecker, D.; Liao, Y. Long-Lived Photoacid Based upon a Photochromic Reaction. J. Am. Chem. Soc. 2011, 133, 14699.
- Higgins, C. D.; Szmanda, C. R.; Antohe, A.; Denbeaux, G.; Georger, J.; Brainard, R. L. Resolution, Line-Edge Roughness, Sensitivity Tradeoff, and Quantum Yield of High Photo Acid Generator Resists for Extreme Ultraviolet Lithography. Jpn. J. Appl. Phys. 2011, 50, 036504.
- Jin, M.; Wu, X.; Xie, J.; Malval, J.-P.; Wan, D. One/Two-Photon-Sensitive Photoacid Generators Based on Benzene Oligomer-Containing D–π–A-Type Aryl Dialkylsulfonium Salts. RSC Adv. 2015, 5, 55340.
- Nakashima, T.; Tsuchie, K.; Kanazawa, R.; Li, R.; Iijima, S.; Galangau, O.; Nakagawa, H.; Mutoh, K.; Kobayashi, Y.; Abe, J.; Kawai, T. Self-Contained Photoacid Generator Triggered by Photocyclization of Triangle Terarylene Backbone. J. Am. Chem. Soc. 2015, 137, 7023.
- Grzeskowiak, S.; Narasimhan, A.; Rebeyev, E.; Joshi, S.; Brainard, R. L.; Denbeaux, G. Acid Generation Efficiency of EUV PAGs via Low Energy Electron Exposure. J. Photopolym. Sci. Technol. 2016, 29, 453.
- Li, R.; Nakashima, T.; Kanazawa, R.; Galangau, O.; Kawai, T. Efficient Self-Contained Photoacid Generator System Based on Photochromic Terarylenes. Chem. Eur. J. 2016, 22, 16250.
- Mizutsu, R.; Asato, R.; Martin, C. J.; Yamada, M.; Nishikawa, Y.; Katao, S.; Yamada, M.; Nakashima, T.; Kawai, T. Photo-Lewis Acid Generator Based on Radical-Free 6π Photo-Cyclization Reaction. J. Am. Chem. Soc. 2019, 141, 20043.
- Xu, Z.; Wang, Z.; Zhang, Y.; Yao, X.; Ding, M.; Shi, H.; An, Z. Self-Contained Photo-Acid Generators with High Quantum Yields Triggered by Photo-Cyclization. Chem. Commun. 2022, 58, 13266.
Photoreaction Mechanism
- Sanrame, C. N.; Brandao, M. S. B.; Coenjarts, C.; Scaiano, J. C.; Pohlers, G.; Suzuki, Y.; Cameron, J. F. Mechanism of Photoacid Generation for an Arylcycloalkylsulfonium Salt by Ring Opening and Aryl Cleavage. Photochem. Photobiol. Sci. 2004, 3, 1052.
- Tsuchimura, T. Recent Progress in Photo-Acid Generators for Advanced Photopolymer Materials. J. Photopolym. Sci. Technol. 2020, 33, 15.
- Niu, X.-Z.; Pepel, R. D.; Paniego, R.; Field, J. A.; Chorover, J.; Abrell, L.; Sáez, A. E.; Sierra-Alvarez, R. Photochemical Fate of Sulfonium Photoacid Generator Cations Under Photolithography Relevant UV irradiation. J. Photochem. Photobiol. A. 2021, 416, 113324.
Photo Base Generator (PBG)
Photo Base Generator (PBG)
- Cameron, J. F.; Willson, C. G.; Fréchet, J. M. J. New Photolabile Amino Protecting Groups: Photogeneration of Amines from [(3′,5′-Dimethoxybenzoinyl)oxy]carbonyl Carbamates. J. Chem. Soc., Chem. Commun. 1995, 923.
- Martin, C. J.; Calupitan, J. P.; Minamide, M.; Asato, R.; Goto, Y.; Rapenne, G.; Nakashima, T.; Kawai, T. Systematic Studies of Structural Variations in Terarylene Photohydride Generators. J. Photochem. Photobiol. A. 2020, 397, 112594.
3D Printing
3D Printing
- Kelly, B. E.; Bhattacharya, I.; Heidari, H.; Shusteff, M.; Spadaccini, C. M.; Taylor, H. K. Volumetric Additive Manufacturing via Tomographic Reconstruction. Science 2019, 363, 1075.
- Saccone, M. A.; Gallivan, R. A.; Narita, K.; Yee, D. W.; Greer, J. R. Additive Manufacturing of Micro-Architected Metals via Hydrogel Infusion. Science 2022, 612, 685.
- Gil, N.; Thomas, C.; Mhanna, R.; Mauriello, J.; Maury, R.; Leuschel, B.; Malval, J.-P.; Clément, J.-L.; Gigmes, D.; Lefay, C.; Soppera, O.; Guillaneuf, Y. Thionolactone as a Resin Additive to Prepare (Bio)degradable 3D Objects via VAT Photopolymerization. Angew. Chem. 2022, 134, e202117700.
Multi-Photon Lithography
Multi-Photon Lithography
- Zhou, W.; Kuebler, S. M.; Braun, K. L.; Yu, T.; Cammack, J. K.; Ober, C. K.; Perry, J. W.; Marder, S. R. An Efficient Two-Photon-Generated Photoacid Applied to Positive-Tone 3D Microfabrication. Science 2002, 296, 1106.
- Hahn, V.; Rietz, P.; Hermann, F.; Müller, P.; Barner-Kowollik, C.; Schlöder, T.; Wenzel, W.; Blasco, E.; Wegener, M. Light-Sheet 3D Microprinting via Two-Colour Two-Step Absorption. Nature Photonics 2022, 16, 784.
- Sanders, S. N.; Schloemer, T. H.; Gangishetty, M. K.; Anderson, D.; Seitz, M.; Gallegos, A. O.; Stokes, R. C.; Congreve, D. N. Triplet Fusion Upconversion Nanocapsules for Volumetric 3D Printing. Nature 2022, 604, 474.
・光増感剤と発光体(消滅剤)をシリカカプセル中に閉じ込め、アップコンバージョンの効率を向上.
・①ラジカル阻害剤であるTEMPOと②光吸収剤であるSudan Iの添加により、プリント解像度を向上.
- Liu, T.; Tao, P.; Wang, X.; Wang, H.; He, M.; Wang, Q.; Cui, H.; Wang, J.; Tang, Y.; Tang, J.; Huang, N.; Kuang, C.; Xu, H.; He, X. Ultrahigh-Printing-Speed Photoresists for Additive Manufacturing. Nat. Nanotechnol. 2023.
・光開始剤BTMSTと酸化ジルコニウムの反応を利用し、高速3Dプリントを実現.
・レーザー強度6.0 mWかつ532 nmの波長で、ライン幅38 nmを実現。
Photochemical Models
Photochemical Models
- Asmussen, S.; Arenas, G.; Cook, W. D.; Vallo, C. Photoinitiation Rate Profiles During Polymerization of a Dimethacrylate-Based Resin Photoinitiated with Camphorquinone/Amine. Influence of Initiator Photobleaching Rate. Eur. Polym. J. 2009, 45, 515.
- Buck, A. T.; Beck, C. L.; Winter, A. H. Inverted Substrate Preferences for Photochemical Heterolysis Arise from Conical Intersection Control. J. Am. Chem. Soc. 2014, 136, 8933.
- Menzel, J. P.; Noble, B. B.; Blinco, J. P.; Barner-Kowollik, C. Predicting Wavelength-Dependent Photochemical Reactivity and Selectivity. Nat. Commun. 2021, 12, 1691.
- Stiles, A.; Tison, T.-A.; Pruitt, L.; Vaidya, U. Photoinitiator Selection and Concentration in Photopolymer Formulations towards Large-Format Additive Manufacturing. Polymers 2022, 14, 2708.
- Walden, S. L.; Carroll, J. A.; Unterreiner, A.-N.; Barner-Kowollik, C. Photochemical Action Plots Reveal the Fundamental Mismatch Between Absorptivity and Photochemical Reactivity. Adv. Sci. 2023, , 2306014.
・一般に光吸収が強いほど光反応が起こりやすいと言われるが、これは必ずしも真ではない。
・効率の良い光反応を達成する上では、励起状態における①反応パスへのアクセスの容易さと②長い寿命が重要。
Visible Light
Visible Light
- Dumur, F. Recent Advances in Monocomponent Visible Light Photoinitiating Systems Based on Sulfonium Salts. Polymers 2023, 15, 4202.
Extreme Ultraviolet (EUV)
Extreme Ultraviolet (EUV)
- Wang, Y.; Chen, J.; Zeng, Y.; Yu, T.; Wang, S.; Guo, X.; Hu, R.; Tian, P.; Vockenhuber, M.; Kazazis, D.; Ekinci, Y.; Wu, Y.; Yang, S.; Zhao, J.; Yang, G.; Li, Y.; Nonchemically Amplified Molecular Resists Based on Sulfonium-Functionalized Sulfone Derivatives for Sub-13 nm Nanolithography. 2023, 6, 18480.
Self-Immolative Polymers
Self-Immolative Polymers
- Miller, K. A.; Morado, E. G.; Samanta, S. R.; Walker, B. A.; Nelson, A. Z.; Sen, S.; Tran, D. T.; Whitaker, D. J.; Ewoldt, R. H.; Braun, P. V.; Zimmerman, S. C. Acid-Triggered, Acid-Generating, and Self-Amplifying Degradable Polymers. J. Am. Chem. Soc. 2019, 141, 2838.
Photodegradable Polymers
Photodegradable Polymers
- Ishikawa, T.; Morino, K.; Sudo, A.; Endo, T. Incorporation of Ketone Groups into Poly(4-hydroxystyrene)s Main Chain by Radical Copolymerization of 4-(tert-Butoxy)styrene and 2,2-Diphenyl-4-methylene-1,3-dioxolane and Their Photoscission. J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 4344.
- Inui, T.; Sato, E.; Matsumoto, A. Pressure-Sensitive Adhesion System Using Acrylate Block Copolymers in Response to Photoirradiation and Postbaking as the Dual External Stimuli for On-Demand Dismantling. ACS Appl. Mater. Interfaces 2012, 4, 2124.
- Garrison, J. B.; Hughes, R. W.; Sumerlin, B. S. Backbone Degradation of Polymethacrylates via Metal-Free Ambient-Temperature Photoinduced Single-Electron Transfer. ACS Macro Lett. 2022, 11, 441.
- Huang, Z.; Shanmugam, M.; Liu, Z.; Brookfield, A.; Bennett, E. L.; Guan, R.; Vega Herrera, D. E.; Lopez-Sanchez, J. A.; Slater, A. G.; McInnes, E. J. L.; Qi, X.; Xiao, J. Chemical Recycling of Polystyrene to Valuable Chemicals via Selective Acid-Catalyzed Aerobic Oxidation under Visible Light. J. Am. Chem. Soc. 2022, 144, 6532.
Photodegradable Gels
Photodegradable Gels
- Huang, Q.; Bao, C.; Ji, W.; Wanga, Q.; Zhu, L. Photocleavable Coumarin Crosslinkers Based Polystyrene Microgels: Phototriggered Swelling and Release. J. Mater. Chem. 2012, 22, 18275.
- Koyama, Y.; Yoshii, T.; Kohsaka, Y.; Takata, T. Photodegradable Cross-linked Polymer Derived from a Vinylic Rotaxane Cross-linker Possessing Aromatic Disulfide Axle. Pure Appl. Chem. 2013, 85, 835.
・光照射によって切断された芳香族ジスルフィドは再結合を起こすが、脱包接により機械的な結合が失われることでゲルが恒久的に分解。
- Badeau, B. A.; Comerford, M. P.; Arakawa, C. K.; Shadish, J. A.; DeForest, C. A. Engineered Modular Biomaterial Logic Gates for Environmentally Triggered Therapeutic Delivery. Nat. Chem. 2018, 10, 251.
- Lai, J.; Abune, L.; Zhao, N.; Wang, Y. Programmed Degradation of Hydrogels with a Double-Locked Domain. Angew. Chem. 2019, 58, 2820.
・光によるo-ニトロフェニルエタノールの環化反応とその後の酸による分解(Chem. Eur. J. 2016, 22, 6361.)を刺激応答性ゲル材料の架橋剤として活用。
- Russell, G. M.; Kaneko, T.; Ishino, S.; Masai, H.; Terao, J. Transient Photodegradability of Photostable Gel Induced by Simultaneous Treatment with Acid and UV–Light for Phototuning of Optically Functional Materials. Adv. Funct. Mater. 2022, 32, 2205855.
Photodegradable Units
Photodegradable Units
- Schulte, A. M.; Alachouzos, G.; Szymański, W.; Feringa, B. L. Strategy for Engineering High Photolysis Efficiency of Photocleavable Protecting Groups through Cation Stabilization. J. Am. Chem. Soc. 2022, 144, 12421.
PhD Thesis
PhD Thesis
- Bhattarai S. Study of Line Edge Roughness and Interactions of Secondary Electrons in Photoresists for EUV Lithography. UC Berkeley, 2017.
- Vesters, Y.; De Gendt, S. (Supervisor); De Simone, D. (Co supervisor) Light-Matter Interactions in Photoresists for Extreme Ultraviolet Lithography. KU Leuven, 2019.
Textbooks
Textbooks
- Chiang, C. C.; Kawa, J. Design for Manufacturability and Yield for Nano-Scale CMOS. Springer Dordrecht 2007.
- Levinson, H. J. Principles of Lithography. SPIE Press Book 2019.
Negative-Type
SU-8
- Abgrall, P.; Conedera, V.; Camon, H.; Gue, A.-M.; Nguyen, N.-T. SU-8 as a Structural Material for Labs-on-Chips and Microelectromechanical Systems. Electrophoresis 2007, 28, 4539.
- Denning, R. G.; Blanford, C. F.; Urban, H.; Bharaj, H.; Sharp, D. N.; Turberfield, A. J. The Control of Shrinkage and Thermal Instability in SU-8 Photoresists for Holographic Lithography. Adv. Funct. Mater. 2011, 21, 1593.
・露光領域であっても、低分子量のオリゴマーが溶出することで体積収縮が起きる。
・溶解コントラストは、PEB時間を増大させることによって高めることができる。
・反応性可塑剤としてEPEGを5%添加することで、収縮率を20%から5%へ低下させることができる。
- Williams, H. E.; Diaz, C.; Padilla, G.; Hernandez, F. E.; Kuebler, S. M. Order of Multiphoton Excitation of Sulfonium Photo-acid Generators Used in Photoresists Based on SU-8. J. Appl. Phys. 2017, 121, 223104.
Photopolymerization
- Bagheri, A.; Jin, J. Photopolymerization in 3D Printing. ACS Appl. Polym. Mater. 2019, 1, 593.
- Eren, T. N.; Feist, F.; Ehrmann, K.; Barner-Kowollik, C. Cooperative Network Formation via Two-Colour Light-Activated λ-Orthogonal Chromophores. Angew. Chem. Int. Ed. 2023, 62, e202307535.
Oxirane/Oxetane
- Terada, K.; Furutani, M.; Arimitsu, K. Photoresist Materials Comprising Photobase Generators and Epoxy Resins Bearing Carboxylic Acids to Lead to Marked Enhancement of Base-catalyzed Cross-linking Reactions. Polym. Adv. Technol. 2018, 30, 304.
- Shundo, A.; Yamamoto, S.; Tanaka, K. Network Formation and Physical Properties of Epoxy Resins for Future Practical Applications. JACS Au 2022, 2, 1522.